矩阵的基本运算以及常见仿射变换
矩阵基本运算¶
矩阵基本运算包括矩阵的加法、减法、数乘、乘法和转置等。以下分别介绍这些运算的规则和方法。
1. 矩阵的加法¶
两个矩阵相加,要求它们的行数和列数相同。结果矩阵的每个元素是对应位置的元素相加得到的。
设矩阵 \(A\) 和矩阵 \(B\) 分别为:
\[ A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}, \quad B = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} \]
则矩阵 \(A + B\) 为:
\[ A + B = \begin{pmatrix} a_{11} + b_{11} & a_{12} + b_{12} \\ a_{21} + b_{21} & a_{22} + b_{22} \end{pmatrix} \]
2. 矩阵的减法¶
两个矩阵相减,要求它们的行数和列数相同。结果矩阵的每个元素是对应位置的元素相减得到的。
设矩阵 \(A\) 和矩阵 \(B\) 分别为:
\[ A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}, \quad B = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} \]
则矩阵 \(A - B\) 为:
\[ A - B = \begin{pmatrix} a_{11} - b_{11} & a_{12} - b_{12} \\ a_{21} - b_{21} & a_{22} - b_{22} \end{pmatrix} \]
3. 矩阵的数乘¶
一个数乘以一个矩阵,结果矩阵的每个元素是原矩阵对应元素乘以这个数得到的。
设矩阵 \(A\) 为:
\[ A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \]
数 \(k\) 为一个标量,则 \(kA\) 为:
\[ kA = \begin{pmatrix} k \cdot a_{11} & k \cdot a_{12} \\ k \cdot a_{21} & k \cdot a_{22} \end{pmatrix} \]
4. 矩阵的乘法¶
两个矩阵相乘,要求第一个矩阵的列数等于第二个矩阵的行数。结果矩阵的第 \(i\) 行第 \(j\) 列的元素是第一个矩阵的第 \(i\) 行与第二个矩阵的第 \(j\) 列的点积。
设矩阵 \(A\) 和矩阵 \(B\) 分别为:
\[ A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}, \quad B = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} \]
则矩阵 \(AB\) 为:
\[ AB = \begin{pmatrix} a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\ a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22} \end{pmatrix} \]
5. 矩阵的转置¶
一个矩阵的转置是将原矩阵的行和列互换得到的矩阵。
设矩阵 \(A\) 为:
\[ A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \]
则矩阵 \(A\) 的转置 \(A^T\) 为:
\[ A^T = \begin{pmatrix} a_{11} & a_{21} \\ a_{12} & a_{22} \end{pmatrix} \]
仿射变换¶
仿射变换是几何图形处理中非常重要的工具,它包括线性变换(如旋转、缩放、剪切)和平移。以下列出了一些常见的仿射变换及其矩阵表示。
1. 平移¶
- 二维平移:将点\((x, y)\)沿向量\((a, b)\)平移可以表示为:
\[ \begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & a \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} \]
- 三维平移:将点\((x, y, z)\)沿向量\((a, b, c)\)平移可以表示为:
\[ \begin{pmatrix} x' \\ y' \\ z' \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & a \\ 0 & 1 & 0 & b \\ 0 & 0 & 1 & c \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix} \]
2. 旋转¶
- 二维旋转:将点\((x, y)\)绕原点旋转角度\(\theta\)可以表示为:
\[ \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \]
- 三维旋转:将点\((x, y, z)\)绕\(z\)轴旋转角度\(\theta\)可以表示为:
\[ \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} \]
3. 缩放¶
- 二维缩放:将点\((x, y)\)在\(x\)轴和\(y\)轴方向上分别缩放\(a\)和\(b\)倍可以表示为:
\[ \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \]
- 三维缩放:将点\((x, y, z)\)在\(x\)轴、\(y\)轴和\(z\)轴方向上分别缩放\(a\)、\(b\)和\(c\)倍可以表示为:
\[ \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} \]
4. 剪切¶
- 二维剪切:将点\((x, y)\)在\(x\)轴方向上剪切\(k\)倍可以表示为:
\[ \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 1 & k \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \]
- 三维剪切:将点\((x, y, z)\)在\(x\)轴方向上剪切\(k\)倍可以表示为:
\[ \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} 1 & k & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} \]
5. 反射¶
- 二维反射:将点\((x, y)\)关于\(x\)轴反射可以表示为:
\[ \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \]
- 三维反射:将点\((x, y, z)\)关于\(xy\)平面反射可以表示为:
\[ \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} \]
6. 组合变换¶
- 组合变换:仿射变换可以组合使用,例如先旋转后平移,可以表示为:
\[ \begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & a \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} \]
C#代码实现¶
1. 定义矩阵类¶
using System;
public class Matrix
{
public double[,] Data { get; private set; }
public int Rows { get; private set; }
public int Columns { get; private set; }
public Matrix(int rows, int columns)
{
Rows = rows;
Columns = columns;
Data = new double[rows, columns];
}
public Matrix(double[,] data)
{
Rows = data.GetLength(0);
Columns = data.GetLength(1);
Data = data;
}
// 矩阵加法
public static Matrix operator +(Matrix a, Matrix b)
{
if (a.Rows != b.Rows || a.Columns != b.Columns)
throw new ArgumentException("Matrices dimensions must match.");
var result = new Matrix(a.Rows, a.Columns);
for (int i = 0; i < a.Rows; i++)
{
for (int j = 0; j < a.Columns; j++)
{
result.Data[i, j] = a.Data[i, j] + b.Data[i, j];
}
}
return result;
}
// 矩阵减法
public static Matrix operator -(Matrix a, Matrix b)
{
if (a.Rows != b.Rows || a.Columns != b.Columns)
throw new ArgumentException("Matrices dimensions must match.");
var result = new Matrix(a.Rows, a.Columns);
for (int i = 0; i < a.Rows; i++)
{
for (int j = 0; j < a.Columns; j++)
{
result.Data[i, j] = a.Data[i, j] - b.Data[i, j];
}
}
return result;
}
// 矩阵乘法
public static Matrix operator *(Matrix a, Matrix b)
{
if (a.Columns != b.Rows)
throw new ArgumentException("Number of columns in the first matrix must match the number of rows in the second matrix.");
var result = new Matrix(a.Rows, b.Columns);
for (int i = 0; i < a.Rows; i++)
{
for (int j = 0; j < b.Columns; j++)
{
result.Data[i, j] = 0;
for (int k = 0; k < a.Columns; k++)
{
result.Data[i, j] += a.Data[i, k] * b.Data[k, j];
}
}
}
return result;
}
// 矩阵转置
public Matrix Transpose()
{
var result = new Matrix(Columns, Rows);
for (int i = 0; i < Rows; i++)
{
for (int j = 0; j < Columns; j++)
{
result.Data[j, i] = Data[i, j];
}
}
return result;
}
// 打印矩阵
public override string ToString()
{
var result = "";
for (int i = 0; i < Rows; i++)
{
for (int j = 0; j < Columns; j++)
{
result += Data[i, j] + "\t";
}
result += "\n";
}
return result;
}
}
2. 实现仿射变换¶
public class AffineTransformations
{
// 平移矩阵
public static Matrix TranslationMatrix(double tx, double ty)
{
return new Matrix(new double[,]
{
{1, 0, tx},
{0, 1, ty},
{0, 0, 1}
});
}
// 旋转矩阵(二维)
public static Matrix RotationMatrix(double angle)
{
double rad = angle * Math.PI / 180.0;
return new Matrix(new double[,]
{
{Math.Cos(rad), -Math.Sin(rad), 0},
{Math.Sin(rad), Math.Cos(rad), 0},
{0, 0, 1}
});
}
// 缩放矩阵
public static Matrix ScalingMatrix(double sx, double sy)
{
return new Matrix(new double[,]
{
{sx, 0, 0},
{0, sy, 0},
{0, 0, 1}
});
}
// 剪切矩阵(沿x轴)
public static Matrix ShearMatrix(double shx)
{
return new Matrix(new double[,]
{
{1, shx, 0},
{0, 1, 0},
{0, 0, 1}
});
}
// 反射矩阵(沿x轴)
public static Matrix ReflectionMatrix()
{
return new Matrix(new double[,]
{
{1, 0, 0},
{0, -1, 0},
{0, 0, 1}
});
}
// 应用仿射变换
public static Matrix ApplyTransformation(Matrix point, Matrix transformation)
{
return transformation * point;
}
}
3. 测试代码¶
class Program
{
static void Main(string[] args)
{
// 定义一个点 (2, 3)
var point = new Matrix(new double[,]
{
{2},
{3},
{1}
});
// 平移矩阵
var translation = AffineTransformations.TranslationMatrix(4, 5);
var translatedPoint = AffineTransformations.ApplyTransformation(point, translation);
Console.WriteLine("平移后: ");
Console.WriteLine(translatedPoint);
// 旋转矩阵
var rotation = AffineTransformations.RotationMatrix(45); // 45度
var rotatedPoint = AffineTransformations.ApplyTransformation(point, rotation);
Console.WriteLine("旋转后: ");
Console.WriteLine(rotatedPoint);
// 缩放矩阵
var scaling = AffineTransformations.ScalingMatrix(2, 3);
var scaledPoint = AffineTransformations.ApplyTransformation(point, scaling);
Console.WriteLine("缩放后: ");
Console.WriteLine(scaledPoint);
// 剪切矩阵
var shear = AffineTransformations.ShearMatrix(0.5);
var shearedPoint = AffineTransformations.ApplyTransformation(point, shear);
Console.WriteLine("剪切后: ");
Console.WriteLine(shearedPoint);
// 反射矩阵
var reflection = AffineTransformations.ReflectionMatrix();
var reflectedPoint = AffineTransformations.ApplyTransformation(point, reflection);
Console.WriteLine("反射后: ");
Console.WriteLine(reflectedPoint);
}
}